Parsing as language modelling

Séminaire Cental

Benoit Crabbé

A Laboratoire de linguistique formelle w

Université de Paris

12 décembre 2019

. e R DT



Overall question/problem

@ Design of a computational model of human sentence processing that
can predict human behaviour
@ Interested in testing the structural hypothesis:

e Sequential models without explicit structural biases
o Hierarchical (tree-like) models with tree structure and recursivity

Deep learning context
The discussion was somehow settled by Chomsky in the 1950's but there is
a resurgence caused by deep learning models such as LSTM and attention

based models.

. el 10, A 20



Plan

© Language modelling

. ST ORREY T



Language modelling

Language modelling

@ Let a string x = x3 ... x, be a sequence of n words.

o Let X' be a formal language, that is a (possibly infinite) set of
strings. A language model assigns a probability to each string x € X

such that :
> Px)=1
xeX
@ By applying the chain rule of conditional probabilities, we get :

P(x) = H P(xilx1 ... xi—1)
i=1

Example

P(a,b,c,d,e) = P(a)P(bla)P(c|a, b)P(d|a, b, c)P(e|a, b, c,d)

. S i A 0



Language modelling

n-gram language models

@ Factors involved in the chain rule grow up in size as the sequence gets
longer (see P(e|a, b, c, d) above). It is common place to approximate
these longer factors by shorter ones, ex. P(e|c, d).

@ Capping the size of those factors to some size k is called a markov
assumption of order k. Under this assumption, the probability of a
sentence is computed as:

P(X) = H P(X,"X,'_k .. .X,'_1)
i=1

when k = 1 we say that the model is bigram and when k = 2 we say
that the model is trigram.

Example
P(c|a, b) is a trigram, P(b|a) is a bigram.

. Bl 1, B 0



Language modelling

Estimation of an n-gram model

@ An n-gram model is usually estimated from data where :

count(Xj_k - .. Xj)
COUﬂt(X,',k .. .X,'_]_)

P(xi|xi—k - .. xi—1) =

@ In practice, this involves counting long sequences of words if the order
k of the model is large.

e This is quickly getting largely problematic when k > 3 (and already
problematic with k € {1,2} because some sequences remain unseen
in data, as a consequence of Zipf law (Smoothing methods).

Example

P(c|a, b) = Luntla:b.c) - p(pq) — count(a.b)

count(a,b) '’ count(a)

. e R DT G



Language modelling

Neural language models

@ Neural language models do not make the markov assumption.

@ Rather a neural language model uses a parametric function, a neural
network, to compute the probabilities of the conditionals
P(xi|x1 ... xi—1)

@ An example of such network is the recurrent neural network (RNN),
that is a function of the form :

hi—1 = g(Wph;_» + Wee(xi_1) + b,) (recurrence)
P(xi|x1 . ..xi—1) = softmax(W,h;_1 + b,) (output)

. P T



Example RNN

N
- APAI—»AI—»
Q Q) CIB - ®

Practical considerations

In practice, vanilla RNNs suffer the gradient vanishing problem during
parameter estimation. We work with LSTMs or GRU networks instead. But
this level of granularity is irrelevant in this talk.

. e R DT )



Language modelling

Evaluating language models

@ It is often of interest to measure the amount of uncertainty underlying
the prediction of the next word for a language model. This can be
measured with the quantity of information :

—/ngPg(X,'|X1 . X,',l)

and can be made global for a whole corpus x = x7 ... x, as

N
1
N Z loga Po(xi|x1 - - - xi—1)
i=1
@ The metric used is called perplexity, and computed as :
PPL(X) = 27% N | logoPo(x;|x1...xi—1)

... the lower, the better (~ the model is less perplex)

. T OREY T



Plan

© Generative neural parsing

. Do i Bl i



Generative neural parsing

Parsing as language modelling

@ Recall that a language model computes the probability of a sentence
with :

P(x) = H P(xi|x1 ... xi-1)
i=1

@ Instead of computing the factors P(x;|x1 ...x;_1) like if words were
just raw sequences, we introduce an additional assumption :

Sentences have underlying hidden tree structures !

o Language modelling with this additional treeness assumption will
essentially provide a new way to compute the factors P(x;|x; ... xj_1)

. B i Gl il



Trees and ambiguity

@ A single sentence can be generated by several trees:

S S
/\ /\
NP VP NP VP
%\ A
The mouse eats NP PP Tf{kuse eats NP
%\
the/hese wi{\NP the cheese PP
a knife with/\NP
a knife

where structural difference may also involve a semantic difference

@ No grammaticality. Current parsers do not assume a grammar.
Every tree covering the full sentence is potentially a good candidate.
(= combinatorial explosion)

. Besne i Gl 6



Generative neural parsing

Encoding trees as sequences

Tree traversals

@ All generative parsing algorithms for language modelling encode trees
as sequences of actions, called derivations. A particular parsing
algorithm can be understood as a way to generate trees and their
words according to a particular tree traversal:

S@ 5@ 5©

NP@ VP@ NP@ VP@ NP@ VP.

Nin Niw Mg

The® fox@crosses@®the@® road@ The@ fox@)crosses®the@ road©@ The® fox@crosses@the® road®

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Preorder traversal In-order traversal Postorder traversal
Top down parser Left corner parser bottom up (shift reduce) parser

. B i G G



Generative neural parsing

Tree traversals as transition systems

@ The parsing state is a couple (S, B) where S is a Stack and B a
Buffer.

@ The parser moves from state to state by performing actions. It starts
on an initial state and its goal is to reach a final state

@ Here is a possible transition system for top down tree traversal:

(S,B)
Pred(X) (S[(X, B)
Shife(w) E;VVV”E;
(S|(X...Y|B)
Reduce (S[X.B)
Init (0, wy ... wp)
End (X,0)

. DR i Gl G



Generative neural parsing

Example
STACK BUFFER AcCTION
1] The , fox, crosses, the, road  Pred(S)
(s The , fox, crosses, the, road  Pred(NP)
(S (NP The , fox, crosses, the, road ~ Shift(The)
(S (NP The fox, crosses, the, road Shift(fox)
(S (NP The fox crosses, the, road Reduce
(S NP crosses, the, road Pred(VP)
(S NP (VP crosses, the, road Shift(crosses)
(S NP (VP crosses the, road Pred(NP)
(S NP (VP crosses (NP the, road Shift(the)
(S NP (VP crosses (NP the road Shift(road)
(S NP (VP crosses (NP the road 0 Reduce
(S NP (VP crosses NP 0 Reduce
(S NP VP 0 Reduce
S 0 goal !

The action column is the derivation (parse history)
We can retrieve the actual parse tree from a derivation.

. Do i Gl 5



Generative neural parsing

Non determinism and combinatorial explosion

@ At each time step during inference, the parser has to choose an action
to perform in the set A of actions. This set is the union of :

o All Pred actions (one Pred action/Non terminal)

o All Shift action (one Shift action/terminal).

e One reduce action
Thus the search space naturally increases exponentially in size with
the length of the derivation even if some constraints apply. For
instance input constraints on shift are obvious.

@ Most parsers use a scoring method as support for the decision
procedure. Here we provide some deep learning based methods.

. DR i Bl i



Generative neural parsing

History based models

@ Since the derivation (history) is a sequence @ = aj ... am, just use an
RNN to predict the next action :

hi—1 = g(Wph;_2 +Wc.e(aj_1) + b,;) (recurrence)
P(aj|ay ... aj—1) = softmax(W,h;_1 + b,) (output)
@ Then the probability of a derivation P(a; ... an) is computed with
the chain rule :
P(ai...am) = H P(ajlay ... aj-1)
i=1

1

@ That's the method used by (Choe and Charniak 2016; Stern et al
2017)

. B i Gl i



Generative neural parsing

Configuration based models

Input vectorisation

@ Instead of using the history, one could use the information found in a
given configuration (S, B) to inform the decision.
@ To do that we have to vectorize the configuration.
e On the buffer, we cannot look there if we want to be incremental
o On the stack there are words, open constituents, closed constituents.
o Words and open constituents can be vectorized by lexical embeddings
o More complex is the representation of closed constituents where we
want to use tree embeddings. Here is one way to do that:

: x
x |
NP :
u/\'l\wi
I NP P

. e i Gl G



Generative neural parsing

Configuration based models
Stack-RNN

@ Basic idea : use an RNN to encode the stack with inputs x the
vectorized contents of the stack

@ Contrary to standard RNN that keeps pushing on top of the sequence,
a full parser also has to pop stack elements. Thus we need to
implement a pop function for RNN

@ Here is how this is done (Dyer et al. 2015) :

This is called a stack-lstm. This can be implemented only with
libraries using a dynamic computation graph such as DyNet and
Pytorch.

. Do i Gl G



Generative neural parsing

Configuration based models
Adding the softmax

@ Let's call h; the hidden state of the stack-Istm at the i—th inference
step, then the probability decision on the next action can be
computed as :

P(aj|a; ... aj—1) = softmax(W h; + b)

. DR i G 20



The RNNG model

It plugs everything together

@ RNNG combines 3 representations : an history based model encoded
with an RNN, a configuration based model encoded with a
STACK-RNN and a linear model encoding linearily the input with a
RNN. Thus the overall model is defined as :

h; = rnny(a;_1)
s, = stack—rnnH(Xtop)
L; = rnng(€/ast)
h;
L;
P(ajlay ... aj—1) = softmax(W,u; + b,)

where w; is the last word shifted at inference step i

. Do i Bl 2l



The RNNG model

Illustration
e pay)
St Ty
A uy P
-~
S NP (VP cat  hungry The
act

The hungry cat

Probability of a derivation
Note that the probability of a derivation P(x,y) still decomposes as :

m

P(x,y) = H P(ajlay ... ai-1)
i=1

. Do i, G 2



Parsing and search
@ Parsing amounts to explore the search the tree. Traditional methods

are beam search (and sometimes even greedy search).
@ Recherche en beam :

@ Recherche gloutonne :

<

December 12, 2019 23 / 40



Plan

© Variable beam search

. Do i G 20



Variable beam search

The fundamental problem of generative parsing

The fundamental problem
@ Beam search does not work ! (as is)

o Cause ? lexical biases, lexical transition probabilities (shift/generate
actions) are much lower than structural transition probabilities
(reduce, predict)

@ Consequences : derivations that generate lexical items early are
pruned out of the beam. (complex structure at the beginning of the
sentence)

Possible solutions
@ Reranking architecture (Dyer et al 2016; Choe and Charniak 2016).
@ Word synchronous Beam Search (Stern et al 2017; Hale et al. 2018)
e Particle filtering inspired Beam Search (Crabbé, Fabre, Pallier 2019)

. Bes i B 23



Variable beam search

Reranking architecture

(related work)

o Initially (Dyer et al 2016; Charniak and Choe 2016) framed generative
neural parsing as a two stage process :
© Parse with a discriminative parser and get K derivations
@ Rescore those K derivations with the generative model (reranking)

@ A discriminative parser does not have the lexical bias problem. Indeed
words are given and, as a result, there is just one shift action (with
predict and reduce actions)

. e i G 2



Variable beam search

Variable beam search
the idea

@ The previous solution (reranking) breaks incrementality.

@ Crabbé, Fabre and Pallier 2019 proposed to use an alternative search
method that progresses iteratively from word x; to word x;11. The
move from w; to wj;1 proceeds as follows :

@ All derivations in the beam (x,y) € Y(x;) that successfully generated
the sentence up to word x; are weighted with a finite budget K of
particles that is spread proportionally to their probabilities. Derivations
without particles are pruned from the search.

@ The derivations are expanded until they generate x;;1 the next word or
are pruned from the search when the number of particles associated to
the derivation is 0.

. Do i G 2



Variable beam search

[llustration

Example of a sampling step from derivation“s. generat;;1g x; (white nodes) to derivations
generating x;j11 (circled blue nodes) with a budget of K = 15 particles. Inference may stop
because of a lack of budget as illustrated by red nodes. Derivations are never compared to each
other during the sampling step, hence avoiding lexical biases that hamper the process of beam

search.

e e i Gl 2



Variable beam search

Sequential importance sampling
Sampling step

@ The probability distribution to sample from cannot be P(a|x<;,y<;)

@ The reason comes from the fact that we can generate only a single
word at the next time step (by construction of the parsing task)

@ We rather use an importance distribution:

P(alx<i,y<i)
2 EA* P(a’|x<,-,y<,-)

P*(alx<i,y<i) =
>
@ Search tree growth (particle sampling):

m(x,ya) = [7m(x,y)P*(alx<i, y<i)]

. DR i B 2



Reweighting

@ Weighting partial derivations:

P(Xth)
Y EV(x;) P(xi.y')

w(x;,yi) = 5

@ Given a constant budget K we reallocate each derivation a number of
particles such that:

m(xi,yi) = [Kw(x;,yi)]

. e i Gl g0



Parsing task

This amounts to predict the most probable derivation (x,y) (encoded tree)

with max probability :

(x,¥) = argmax P(x,y)
yeY(x)

December 12, 2019

31/ 40



Variable beam search

Parsing for language modelling

In our current notation the prefix probability of a string prefix up to word
X; is computed by marginalizing out the parses :

P(x)=P(xa...x)= Y. P(xi,yi)

yeY(xi)

where the probability of a derivation P(x;,y;) is the probability of the
sequence of actions generating jointly the words x and structure y.

P(x,y) =P(ar...am) = HP ajlar...aj-1)

Frow where one can get conditionals of the form P(x|x ... x-1) = ppotsiks
by applying basic definitions of conditional probabilities.

. e i Gl



Variable beam search

Tests
Parsing

@ Tests run on the Penn Treebank (= 40000 sentences for train) and

2400 for test.

MODEL F-score PpL (wsj) PPL (prince)
K=50000 91.02 94.35 154.93
IKN5 - 155.02 309.54
LSTM-LM - 141.28 204.06
(Dyer et al. 2016) 93.3 105.2 unknown

(Kitaev et al. 2018)  93.55 -

December 12, 2019

33 /40



Variable beam search

Parsing and human behaviour

@ The parser outputs measures of the model behaviour using
word-synchronized pattern
@ There are two families of measures output by the parser:

o Beam size measures
(beam successful activity, beam unsuccessful activity, total beam
activity)

e Language model measures
(entropy,surprisal,conditional log probabilities. . . )

@ These measures can be used as input (of a GLM) to predict brain
activity (or some other forms of human behaviour)

. Do i ) @



Variable beam search

[[lustration

Mid-Cingulate s o/ Mid-Cingulate
A31 . Superior Medial _Superior ) BA31
y Frontal Gyrus Middle Frontal B
. Gyrus

BA10

. . Superior
p‘ "\ Temporal
| Gyrus

p <0.001 uncorr.
z-value

31—
Comparing B400 versus K50000

7 >
Superior/Mid- 58
Temporal Gyrus

. Resse i), Gl

35 / 40



Plan

@ Unsupervised perspectives

. B i B &



Unsupervised perspectives

Observation

Data set is small

@ On current Penn Treebank standards (~ 40000 sentences), parsers
are pretty good language models (CFP 2019) :

MODEL F-score PpL (wsj) PpL (prince)
K=50000 91.02 94.35 154.93
IKN5 - 155.02 309.54
LSTM-LM - 141.28 204.06

@ But are pretty bad in the language modelling world if we consider very
large scale language models ala (Jozefowicz et al. 2016) that get a
perplexity around 23.2 (although the numbers cannot be truly
compared since the data sets are different).

. e i Gl &



Weakly-supervised parsing

@ Motivation similar to unsupervised learning. Scaling up parsers and
reducing the dependence to annotated data

@ In weakly supervised learning we keep some supervision to make the
process less computationnaly expensive.
o Different ways to reduce supervision :
© Semi-supervised model with guiding parser assistance (Choe and
Charniak 2016)
@ Full unsupervised learning, such as RNNG (Kim et al. 2019). Inference
methods too expensive, will hardly scale up.
© Built-in semi-supervised model (my current idea). Amounts to frame a
parsing model very similar to an LSTM-LM
@ Stack-LstM™ (Joulin and Mikolov 2015)

. e i G g



Unsupervised perspectives

Strong left corner encoding of a tree

@ The idea is to rely on the following encoding of a binary tree
(Rozenkrantz and Lewis 1970,Kitaev et al. 2019):

the tree traversal that has the property to be:
© Strongly incremental
@ Strictly alternates the use of lexical and structural nodes
© The number of actions to traverse the tree can be predicted from the
size of the input (2n — 1)
@ Provided word embeddings, properties (2) and (3) allows to train
conveniently a parser almost like an LLSTM or GPT tagger on a GPU
@ This is easily amenable to weakly supervised learning from raw text,
where words are used as partial supervision.

. e i G g



Stack LsT™m

@ The STACK RNN or STACK LSTM is an RNN (resp. LsTM)
augmented with a neural stack and a controller. At each time step
the controller will make a soft prediction on actions such as Push,
Pop, No-Op. The controller will update the content of the stack
accordingly:

input hidden output

stack(t-1) stackt)

Expected advantage
The advantage of those methods comes from the fact that raw text is
largely sufficient (?) to train these models.

. B i G (0



	Language modelling
	Generative neural parsing
	Variable beam search
	Unsupervised perspectives

