
Parsing as language modelling
Séminaire Cental

Benôıt Crabbé

12 décembre 2019

December 12, 2019 1 / 40

Overall question/problem

Design of a computational model of human sentence processing that
can predict human behaviour

Interested in testing the structural hypothesis:

Sequential models without explicit structural biases
Hierarchical (tree-like) models with tree structure and recursivity

Deep learning context

The discussion was somehow settled by Chomsky in the 1950’s but there is
a resurgence caused by deep learning models such as lstm and attention
based models.

December 12, 2019 2 / 40

Language modelling

Plan

1 Language modelling

2 Generative neural parsing

3 Variable beam search

4 Unsupervised perspectives

December 12, 2019 3 / 40

Language modelling

Language modelling

Let a string x = x1 . . . xn be a sequence of n words.

Let X be a formal language, that is a (possibly infinite) set of
strings. A language model assigns a probability to each string x ∈ X
such that : ∑

x∈X
P(x) = 1

By applying the chain rule of conditional probabilities, we get :

P(x) =
n∏

i=1

P(xi |x1 . . . xi−1)

Example

P(a, b, c , d , e) = P(a)P(b|a)P(c |a, b)P(d |a, b, c)P(e|a, b, c , d)

December 12, 2019 4 / 40

Language modelling

n-gram language models

Factors involved in the chain rule grow up in size as the sequence gets
longer (see P(e|a, b, c , d) above). It is common place to approximate
these longer factors by shorter ones, ex. P(e|c, d).

Capping the size of those factors to some size k is called a markov
assumption of order k . Under this assumption, the probability of a
sentence is computed as:

P(x) =
n∏

i=1

P(xi |xi−k . . . xi−1)

when k = 1 we say that the model is bigram and when k = 2 we say
that the model is trigram.

Example

P(c |a, b) is a trigram, P(b|a) is a bigram.

December 12, 2019 5 / 40

Language modelling

Estimation of an n-gram model

An n-gram model is usually estimated from data where :

P(xi |xi−k . . . xi−1) =
count(xi−k . . . xi)

count(xi−k . . . xi−1)

In practice, this involves counting long sequences of words if the order
k of the model is large.

This is quickly getting largely problematic when k > 3 (and already
problematic with k ∈ {1, 2} because some sequences remain unseen
in data, as a consequence of Zipf law (Smoothing methods).

Example

P(c |a, b) = count(a,b,c)
count(a,b) , P(b|a) = count(a,b)

count(a)

December 12, 2019 6 / 40

Language modelling

Neural language models

Neural language models do not make the markov assumption.

Rather a neural language model uses a parametric function, a neural
network, to compute the probabilities of the conditionals
P(xi |x1 . . . xi−1)

An example of such network is the recurrent neural network (Rnn),
that is a function of the form :

hi−1 = g(Whhi−2 + Wee(xi−1) + br) (recurrence)

P(xi |x1 . . . xi−1) = softmax(Wohi−1 + bo) (output)

December 12, 2019 7 / 40

Language modelling

Example RNN

Practical considerations

In practice, vanilla RNNs suffer the gradient vanishing problem during
parameter estimation. We work with lstms or gru networks instead. But
this level of granularity is irrelevant in this talk.

December 12, 2019 8 / 40

Language modelling

Evaluating language models

It is often of interest to measure the amount of uncertainty underlying
the prediction of the next word for a language model. This can be
measured with the quantity of information :

−log2Pθ(xi |x1 . . . xi−1)

and can be made global for a whole corpus x = x1 . . . xn as

− 1

N

N∑

i=1

log2Pθ(xi |x1 . . . xi−1)

The metric used is called perplexity, and computed as :

PPL(x) = 2−
1
N

∑N
i=1 log2Pθ(xi |x1...xi−1)

. . . the lower, the better (∼ the model is less perplex)

December 12, 2019 9 / 40

Generative neural parsing

Plan

1 Language modelling

2 Generative neural parsing

3 Variable beam search

4 Unsupervised perspectives

December 12, 2019 10 / 40

Generative neural parsing

Parsing as language modelling

Recall that a language model computes the probability of a sentence
with :

P(x) =
n∏

i=1

P(xi |x1 . . . xi−1)

Instead of computing the factors P(xi |x1 . . . xi−1) like if words were
just raw sequences, we introduce an additional assumption :

Sentences have underlying hidden tree structures !

Language modelling with this additional treeness assumption will
essentially provide a new way to compute the factors P(xi |x1 . . . xi−1)

December 12, 2019 11 / 40

Generative neural parsing

Trees and ambiguity

A single sentence can be generated by several trees:

S

VP

PP

NP

knifea

with

NP

cheesethe

eats

NP

mouseThe

S

VP

NP

PP

NP

knifea

with

cheesethe

eats

NP

mouseThe

where structural difference may also involve a semantic difference

No grammaticality. Current parsers do not assume a grammar.
Every tree covering the full sentence is potentially a good candidate.
(⇒ combinatorial explosion)

December 12, 2019 12 / 40

Generative neural parsing

Encoding trees as sequences
Tree traversals

All generative parsing algorithms for language modelling encode trees
as sequences of actions, called derivations. A particular parsing
algorithm can be understood as a way to generate trees and their
words according to a particular tree traversal:

1 2 3 4 5

The 3© fox 4©crosses 6©the 8© road 9©

NP 2©

NP 7©

VP 5©

S 1©

Preorder traversal

Top down parser

1 2 3 4 5

The 1© fox 3©crosses 5©the 7© road 9©

NP 2©

NP 8©

VP 6©

S 4©

In-order traversal

Left corner parser

1 2 3 4 5

The 1© fox 2©crosses 4©the 5© road 6©

NP 3©

NP 7©

VP 8©

S 9©

Postorder traversal

bottom up (shift reduce) parser

December 12, 2019 13 / 40

Generative neural parsing

Tree traversals as transition systems

The parsing state is a couple (S,B) where S is a Stack and B a
Buffer.
The parser moves from state to state by performing actions. It starts
on an initial state and its goal is to reach a final state
Here is a possible transition system for top down tree traversal:

Pred(X)
(S,B)

(S|(X ,B)

Shift(w)
(S,w |B)

(S|w ,B)

Reduce
(S|(X . . .Y |B)

(S|X ,B)

Init (∅,w1 . . .wn)

End (X , ∅)

December 12, 2019 14 / 40

Generative neural parsing

Example

Stack Buffer Action

∅ The , fox, crosses, the, road Pred(S)
(S The , fox, crosses, the, road Pred(NP)
(S (NP The , fox, crosses, the, road Shift(The)
(S (NP The fox, crosses, the, road Shift(fox)
(S (NP The fox crosses, the, road Reduce
(S NP crosses, the, road Pred(VP)
(S NP (VP crosses, the, road Shift(crosses)
(S NP (VP crosses the, road Pred(NP)
(S NP (VP crosses (NP the, road Shift(the)
(S NP (VP crosses (NP the road Shift(road)
(S NP (VP crosses (NP the road ∅ Reduce
(S NP (VP crosses NP ∅ Reduce
(S NP VP ∅ Reduce
S ∅ goal !

The action column is the derivation (parse history)
We can retrieve the actual parse tree from a derivation.

December 12, 2019 15 / 40

Generative neural parsing

Non determinism and combinatorial explosion

At each time step during inference, the parser has to choose an action
to perform in the set A of actions. This set is the union of :

All Pred actions (one Pred action/Non terminal)
All Shift action (one Shift action/terminal).
One reduce action

Thus the search space naturally increases exponentially in size with
the length of the derivation even if some constraints apply. For
instance input constraints on shift are obvious.

Most parsers use a scoring method as support for the decision
procedure. Here we provide some deep learning based methods.

December 12, 2019 16 / 40

Generative neural parsing

History based models

Since the derivation (history) is a sequence a = a1 . . . am, just use an
Rnn to predict the next action :

hi−1 = g(Whhi−2 + Wee(ai−1) + br) (recurrence)

P(ai |a1 . . . ai−1) = softmax(Wohi−1 + bo) (output)

Then the probability of a derivation P(a1 . . . am) is computed with
the chain rule :

P(a1 . . . am) =
m∏

i=1

P(ai |a1 . . . ai−1)

That’s the method used by (Choe and Charniak 2016; Stern et al
2017)

December 12, 2019 17 / 40

Generative neural parsing

Configuration based models
Input vectorisation

Instead of using the history, one could use the information found in a
given configuration (S,B) to inform the decision.

To do that we have to vectorize the configuration.
On the buffer, we cannot look there if we want to be incremental
On the stack there are words, open constituents, closed constituents.
Words and open constituents can be vectorized by lexical embeddings
More complex is the representation of closed constituents where we
want to use tree embeddings. Here is one way to do that:

suming the availability of constant time push and
pop operations, the runtime is linear in the number
of the nodes in the parse tree that is generated by
the parser/generator (intuitively, this is true since al-
though an individual REDUCE operation may require
applying a number of pops that is linear in the num-
ber of input symbols, the total number of pop opera-
tions across an entire parse/generation run will also
be linear). Since there is no way to bound the num-
ber of output nodes in a parse tree as a function of
the number of input words, stating the runtime com-
plexity of the parsing algorithm as a function of the
input size requires further assumptions. Assuming
our fixed constraint on maximum depth, it is linear.

3.5 Comparison to Other Models
Our generation algorithm algorithm differs from
previous stack-based parsing/generation algorithms
in two ways. First, it constructs rooted tree struc-
tures top down (rather than bottom up), and sec-
ond, the transition operators are capable of directly
generating arbitrary tree structures rather than, e.g.,
assuming binarized trees, as is the case in much
prior work that has used transition-based algorithms
to produce phrase-structure trees (Sagae and Lavie,
2005; Zhang and Clark, 2011; Zhu et al., 2013).

4 Generative Model

RNNGs use the generator transition set just pre-
sented to define a joint distribution on syntax trees
(y) and words (x). This distribution is defined as a
sequence model over generator transitions that is pa-
rameterized using a continuous space embedding of
the algorithm state at each time step (ut); i.e.,

p(x, y) =

|a(x,y)|Y

t=1

p(at | a<t)

=

|a(x,y)|Y

t=1

exp r>at
ut + batP

a02AG(Tt,St,nt)
exp r>a0ut + ba0

,

and where action-specific embeddings ra and bias
vector b are parameters in ⇥.

The representation of the algorithm state at time
t, ut, is computed by combining the representation
of the generator’s three data structures: the output
buffer (Tt), represented by an embedding ot, the
stack (St), represented by an embedding st, and the

history of actions (a<t) taken by the generator, rep-
resented by an embedding ht,

ut = tanh (W[ot; st;ht] + c) ,

where W and c are parameters. Refer to Figure 5
for an illustration of the architecture.

The output buffer, stack, and history are se-
quences that grow unboundedly, and to obtain rep-
resentations of them we use recurrent neural net-
works to “encode” their contents (Cho et al., 2014).
Since the output buffer and history of actions are
only appended to and only contain symbols from a
finite alphabet, it is straightforward to apply a stan-
dard RNN encoding architecture. The stack (S) is
more complicated for two reasons. First, the ele-
ments of the stack are more complicated objects than
symbols from a discrete alphabet: open nontermi-
nals, terminals, and full trees, are all present on the
stack. Second, it is manipulated using both push and
pop operations. To efficiently obtain representations
of S under push and pop operations, we use stack
LSTMs (Dyer et al., 2015). To represent complex
parse trees, we define a new syntactic composition
function that recursively defines representations of
trees.

4.1 Syntactic Composition Function

When a REDUCE operation is executed, the parser
pops a sequence of completed subtrees and/or to-
kens (together with their vector embeddings) from
the stack and makes them children of the most recent
open nonterminal on the stack, “completing” the
constituent. To compute an embedding of this new
subtree, we use a composition function based on
bidirectional LSTMs, which is illustrated in Fig. 6.

NP

u v w

NP u v w NP

x
x

Figure 6: Syntactic composition function based on bidirec-

tional LSTMs that is executed during a REDUCE operation; the

network on the right models the structure on the left.

December 12, 2019 18 / 40

Generative neural parsing

Configuration based models
Stack-Rnn

Basic idea : use an Rnn to encode the stack with inputs x the
vectorized contents of the stack

Contrary to standard Rnn that keeps pushing on top of the sequence,
a full parser also has to pop stack elements. Thus we need to
implement a pop function for Rnn

Here is how this is done (Dyer et al. 2015) :

− x1

y0 y1

− x1

y0 y1

TO
P

pop

− x1

y0 y1

TO
P

TO
P

push

y2

x2

Figure 1: A stack LSTM extends a conventional left-to-right LSTM with the addition of a stack pointer
(notated as TOP in the figure). This figure shows three configurations: a stack with a single element (left),
the result of a pop operation to this (middle), and then the result of applying a push operation (right).
The boxes in the lowest rows represent stack contents, which are the inputs to the LSTM, the upper rows
are the outputs of the LSTM (in this paper, only the output pointed to by TOP is ever accessed), and the
middle rows are the memory cells (the ct’s and ht’s) and gates. Arrows represent function applications
(usually affine transformations followed by a nonlinearity), refer to §2.1 for specifics.

influence the representation of the stack. How-
ever, the LSTM has the flexibility to learn to ex-
tract information from arbitrary points in the stack
(Hochreiter and Schmidhuber, 1997).

Although this architecture is to the best of
our knowledge novel, it is reminiscent of the
Recurrent Neural Network Pushdown Automa-
ton (NNPDA) of Das et al. (1992), which added an
external stack memory to an RNN. However, our
architecture provides an embedding of the com-
plete contents of the stack, whereas theirs made
only the top of the stack visible to the RNN.

3 Dependency Parser

We now turn to the problem of learning represen-
tations of dependency parsers. We preserve the
standard data structures of a transition-based de-
pendency parser, namely a buffer of words (B)
to be processed and a stack (S) of partially con-
structed syntactic elements. Each stack element
is augmented with a continuous-space vector em-
bedding representing a word and, in the case of
S, any of its syntactic dependents. Additionally,
we introduce a third stack (A) to represent the his-
tory of actions taken by the parser.3 Each of these
stacks is associated with a stack LSTM that pro-
vides an encoding of their current contents. The
full architecture is illustrated in Figure 3, and we
will review each of the components in turn.

3The A stack is only ever pushed to; our use of a stack
here is purely for implementational and expository conve-
nience.

3.1 Parser Operation

The dependency parser is initialized by pushing
the words and their representations (we discuss
word representations below in §3.3) of the input
sentence in reverse order onto B such that the first
word is at the top of B and the ROOT symbol is at
the bottom, and S and A each contain an empty-
stack token. At each time step, the parser com-
putes a composite representation of the stack states
(as determined by the current configurations of B,
S, and A) and uses that to predict an action to take,
which updates the stacks. Processing completes
when B is empty (except for the empty-stack sym-
bol), S contains two elements, one representing
the full parse tree headed by the ROOT symbol and
the other the empty-stack symbol, and A is the his-
tory of operations taken by the parser.

The parser state representation at time t, which
we write pt, which is used to is determine the tran-
sition to take, is defined as follows:

pt = max {0,W[st;bt;at] + d} ,

where W is a learned parameter matrix, bt is
the stack LSTM encoding of the input buffer B,
st is the stack LSTM encoding of S, at is the
stack LSTM encoding of A, d is a bias term, then
passed through a component-wise rectified linear
unit (ReLU) nonlinearity (Glorot et al., 2011).4

Finally, the parser state pt is used to compute

4In preliminary experiments, we tried several nonlineari-
ties and found ReLU to work slightly better than the others.

336

This is called a stack-lstm. This can be implemented only with
libraries using a dynamic computation graph such as DyNet and
Pytorch.

December 12, 2019 19 / 40

Generative neural parsing

Configuration based models
Adding the softmax

Let’s call hi the hidden state of the stack-lstm at the i−th inference
step, then the probability decision on the next action can be
computed as :

P(ai |a1 . . . ai−1) = softmax(W hi + b)

December 12, 2019 20 / 40

Generative neural parsing

The RNNG model
It plugs everything together

Rnng combines 3 representations : an history based model encoded
with an Rnn, a configuration based model encoded with a
stack-rnn and a linear model encoding linearily the input with a
rnn. Thus the overall model is defined as :

hi = rnnH(ai−1)

si = stack-rnnH(xtop)

Li = rnnL(elast)

ui = g

W

hi

si
Li

 + b

P(ai |a1 . . . ai−1) = softmax(Woui + bo)

where wi is the last word shifted at inference step i

December 12, 2019 21 / 40

Generative neural parsing

The RNNG model
Illustration

The hungry cat

NP (VP(S

RE
DU

CE
GE

N
NT

(N
P)

NT
(VP

)

…

cat hungry The
a<t

p(at)

ut
Tt� �� �St� �� �

Figure 5: Neural architecture for defining a distribution over at given representations of the stack (St), output buffer (Tt) and

history of actions (a<t). Details of the composition architecture of the NP, the action history LSTM, and the other elements of the

stack are not shown. This architecture corresponds to the generator state at line 7 of Figure 4.

The first vector read by the LSTM in both the for-
ward and reverse directions is an embedding of the
label on the constituent being constructed (in the fig-
ure, NP). This is followed by the embeddings of the
child subtrees (or tokens) in forward or reverse or-
der. Intuitively, this order serves to “notify” each
LSTM what sort of head it should be looking for as it
processes the child node embeddings. The final state
of the forward and reverse LSTMs are concatenated,
passed through an affine transformation and a tanh
nonlinearity to become the subtree embedding.5 Be-
cause each of the child node embeddings (u, v, w in
Fig. 6) is computed similarly (if it corresponds to an
internal node), this composition function is a kind of
recursive neural network.

4.2 Word Generation

To reduce the size of AG(S, T, n), word genera-
tion is broken into two parts. First, the decision to
generate is made (by predicting GEN as an action),
and then choosing the word, conditional on the cur-
rent parser state. To further reduce the computa-
tional complexity of modeling the generation of a
word, we use a class-factored softmax (Baltescu and
Blunsom, 2015; Goodman, 2001). By using

p
|⌃|

classes for a vocabulary of size |⌃|, this prediction

5We found the many previously proposed syntactic compo-
sition functions inadequate for our purposes. First, we must
contend with an unbounded number of children, and many
previously proposed functions are limited to binary branching
nodes (Socher et al., 2013b; Dyer et al., 2015). Second, those
that could deal with n-ary nodes made poor use of nonterminal
information (Tai et al., 2015), which is crucial for our task.

step runs in time O(
p

|⌃|) rather than the O(|⌃|) of
the full-vocabulary softmax. To obtain clusters, we
use the greedy agglomerative clustering algorithm
of Brown et al. (1992).

4.3 Training

The parameters in the model are learned to maxi-
mize the likelihood of a corpus of trees.

4.4 Discriminative Parsing Model

A discriminative parsing model can be obtained by
replacing the embedding of Tt at each time step with
an embedding of the input buffer Bt. To train this
model, the conditional likelihood of each sequence
of actions given the input string is maximized.6

5 Inference via Importance Sampling

Our generative model p(x, y) defines a joint dis-
tribution on trees (y) and sequences of words (x).
To evaluate this as a language model, it is neces-
sary to compute the marginal probability p(x) =P

y02Y(x) p(x, y0). And, to evaluate the model as
a parser, we need to be able to find the MAP parse
tree, i.e., the tree y 2 Y(x) that maximizes p(x, y).
However, because of the unbounded dependencies
across the sequence of parsing actions in our model,
exactly solving either of these inference problems
is intractable. To obtain estimates of these, we use

6For the discriminative parser, the POS tags are processed
similarly as in (Dyer et al., 2015); they are predicted for English
with the Stanford Tagger (Toutanova et al., 2003) and Chinese
with Marmot (Mueller et al., 2013).

Probability of a derivation

Note that the probability of a derivation P(x, y) still decomposes as :

P(x, y) =
m∏

i=1

P(ai |a1 . . . ai−1)

December 12, 2019 22 / 40

Generative neural parsing

Parsing and search

Parsing amounts to explore the search the tree. Traditional methods
are beam search (and sometimes even greedy search).

Recherche en beam :

Recherche gloutonne :

December 12, 2019 23 / 40

Variable beam search

Plan

1 Language modelling

2 Generative neural parsing

3 Variable beam search

4 Unsupervised perspectives

December 12, 2019 24 / 40

Variable beam search

The fundamental problem of generative parsing

The fundamental problem

Beam search does not work ! (as is)

Cause ? lexical biases, lexical transition probabilities (shift/generate
actions) are much lower than structural transition probabilities
(reduce, predict)

Consequences : derivations that generate lexical items early are
pruned out of the beam. (complex structure at the beginning of the
sentence)

Possible solutions

Reranking architecture (Dyer et al 2016; Choe and Charniak 2016).

Word synchronous Beam Search (Stern et al 2017; Hale et al. 2018)

Particle filtering inspired Beam Search (Crabbé, Fabre, Pallier 2019)

December 12, 2019 25 / 40

Variable beam search

Reranking architecture
(related work)

Initially (Dyer et al 2016; Charniak and Choe 2016) framed generative
neural parsing as a two stage process :

1 Parse with a discriminative parser and get K derivations
2 Rescore those K derivations with the generative model (reranking)

A discriminative parser does not have the lexical bias problem. Indeed
words are given and, as a result, there is just one shift action (with
predict and reduce actions)

December 12, 2019 26 / 40

Variable beam search

Variable beam search
the idea

The previous solution (reranking) breaks incrementality.

Crabbé, Fabre and Pallier 2019 proposed to use an alternative search
method that progresses iteratively from word xi to word xi+1. The
move from wi to wi+1 proceeds as follows :

1 All derivations in the beam (x, y) ∈ Y(xi) that successfully generated
the sentence up to word xi are weighted with a finite budget K of
particles that is spread proportionally to their probabilities. Derivations
without particles are pruned from the search.

2 The derivations are expanded until they generate xi+1 the next word or
are pruned from the search when the number of particles associated to
the derivation is 0.

December 12, 2019 27 / 40

Variable beam search

Illustration

Example of a sampling step from derivations generating xi (white nodes) to derivations

generating xi+1 (circled blue nodes) with a budget of K = 15 particles. Inference may stop

because of a lack of budget as illustrated by red nodes. Derivations are never compared to each

other during the sampling step, hence avoiding lexical biases that hamper the process of beam

search.
December 12, 2019 28 / 40

Variable beam search

Sequential importance sampling
Sampling step

The probability distribution to sample from cannot be P(a|x<i , y<i)

The reason comes from the fact that we can generate only a single
word at the next time step (by construction of the parsing task)

We rather use an importance distribution:

P∗(a|x<i , y<i) =
P(a|x<i , y<i)∑

a′∈A∗ P(a′|x<i , y<i)

Search tree growth (particle sampling):

π(x, ya) = bπ(x, y)P∗(a|x<i , y<i)e

December 12, 2019 29 / 40

Variable beam search

Reweighting

Weighting partial derivations:

w(xi , yi) =
P(xi , yi)∑

y′∈Ỹ(xi) P(xi , y′)

Given a constant budget K we reallocate each derivation a number of
particles such that:

π(xi , yi) = bKw(xi , yi)e

December 12, 2019 30 / 40

Variable beam search

Parsing task

This amounts to predict the most probable derivation (x, y) (encoded tree)
with max probability :

(x, ŷ) = argmax
y∈Y(x)

P(x, y)

December 12, 2019 31 / 40

Variable beam search

Parsing for language modelling

In our current notation the prefix probability of a string prefix up to word
xi is computed by marginalizing out the parses :

P(xi) = P(x1 . . . xi) =
∑

y∈Y(xi)
P(xi , yi)

where the probability of a derivation P(xi , yi) is the probability of the
sequence of actions generating jointly the words x and structure y.

P(x, y) = P(a1 . . . am) =
m∏

i=1

P(ai |a1 . . . ai−1)

Frow where one can get conditionals of the form P(xi |x1 . . . xi−1) =
P(x1...xi)

P(x1...xi−1)

by applying basic definitions of conditional probabilities.

December 12, 2019 32 / 40

Variable beam search

Tests
Parsing

Tests run on the Penn Treebank (≈ 40000 sentences for train) and
2400 for test.

Model F-score Ppl (wsj) Ppl (prince)

K=50000 91.02 94.35 154.93
IKN5 - 155.02 309.54
LSTM-LM - 141.28 204.06

(Dyer et al. 2016) 93.3 105.2 unknown
(Kitaev et al. 2018) 93.55 - -

December 12, 2019 33 / 40

Variable beam search

Parsing and human behaviour

The parser outputs measures of the model behaviour using
word-synchronized pattern

There are two families of measures output by the parser:

Beam size measures
(beam successful activity, beam unsuccessful activity, total beam
activity)
Language model measures
(entropy,surprisal,conditional log probabilities. . .)

These measures can be used as input (of a GLM) to predict brain
activity (or some other forms of human behaviour)

December 12, 2019 34 / 40

Variable beam search

Illustration

December 12, 2019 35 / 40

Unsupervised perspectives

Plan

1 Language modelling

2 Generative neural parsing

3 Variable beam search

4 Unsupervised perspectives

December 12, 2019 36 / 40

Unsupervised perspectives

Observation
Data set is small

On current Penn Treebank standards (∼ 40000 sentences), parsers
are pretty good language models (CFP 2019) :

Model F-score Ppl (wsj) Ppl (prince)

K=50000 91.02 94.35 154.93

IKN5 - 155.02 309.54
LSTM-LM - 141.28 204.06

But are pretty bad in the language modelling world if we consider very
large scale language models ala (Jozefowicz et al. 2016) that get a
perplexity around 23.2 (although the numbers cannot be truly
compared since the data sets are different).

December 12, 2019 37 / 40

Unsupervised perspectives

Weakly-supervised parsing

Motivation similar to unsupervised learning. Scaling up parsers and
reducing the dependence to annotated data

In weakly supervised learning we keep some supervision to make the
process less computationnaly expensive.

Different ways to reduce supervision :
1 Semi-supervised model with guiding parser assistance (Choe and

Charniak 2016)
2 Full unsupervised learning, such as Rnng (Kim et al. 2019). Inference

methods too expensive, will hardly scale up.
3 Built-in semi-supervised model (my current idea). Amounts to frame a

parsing model very similar to an lstm-lm
4 Stack-Lstm (Joulin and Mikolov 2015)

December 12, 2019 38 / 40

Unsupervised perspectives

Strong left corner encoding of a tree

The idea is to rely on the following encoding of a binary tree
(Rozenkrantz and Lewis 1970,Kitaev et al. 2019):

4

6

8

9f47f35f2

2

3f11

the tree traversal that has the property to be:
1 Strongly incremental
2 Strictly alternates the use of lexical and structural nodes
3 The number of actions to traverse the tree can be predicted from the

size of the input (2n − 1)

Provided word embeddings, properties (2) and (3) allows to train
conveniently a parser almost like an Lstm or Gpt tagger on a Gpu

This is easily amenable to weakly supervised learning from raw text,
where words are used as partial supervision.

December 12, 2019 39 / 40

Unsupervised perspectives

Stack Lstm

The Stack Rnn or Stack Lstm is an Rnn (resp. Lstm)
augmented with a neural stack and a controller. At each time step
the controller will make a soft prediction on actions such as Push,
Pop, No-Op. The controller will update the content of the stack
accordingly:

(a) (b)
Figure 1: (a) Neural network extended with push-down stack and a controlling mechanism that
learns what action (among PUSH, POP and NO-OP) to perform. (b) The same model extended with
a doubly-linked list with actions INSERT, LEFT, RIGHT and NO-OP.

4.2 Pushdown network

In this section, we describe a simple structured memory inspired by pushdown automaton, i.e., an
automaton which employs a stack. We train our network to learn how to operate this memory with
standard optimization tools.

A stack is a type of persistent memory which can be only accessed through its topmost element.
Three basic operations can be performed with a stack: POP removes the top element, PUSH adds
a new element on top of the stack and NO-OP does nothing. For simplicity, we first consider a
simplified version where the model can only choose between a PUSH or a POP at each time step.
We suppose that this decision is made by a 2-dimensional variable at which depends on the state of
the hidden variable ht:

at = f (Aht) , (3)

where A is a 2⇥m matrix (m is the size of the hidden layer) and f is a softmax function. We denote
by at[PUSH], the probability of the PUSH action, and by at[POP] the probability of the POP action.
We suppose that the stack is stored at time t in a vector st of size p. Note that p could be increased
on demand and does not have to be fixed which allows the capacity of the model to grow. The top
element is stored at position 0, with value st[0]:

st[0] = at[PUSH]�(Dht) + at[POP]st�1[1], (4)

where D is 1 ⇥ m matrix. If at[POP] is equal to 1, the top element is replaced by the value below
(all values are moved by one position up in the stack structure). If at[PUSH] is equal to 1, we move
all values down in the stack and add a value on top of the stack. Similarly, for an element stored at
a depth i > 0 in the stack, we have the following update rule:

st[i] = at[PUSH]st�1[i � 1] + at[POP]st�1[i + 1]. (5)

We use the stack to carry information to the hidden layer at the next time step. When the stack is
empty, st is set to �1. The hidden layer ht is now updated as:

ht = �
�
Uxt + Rht�1 + Psk

t�1

�
, (6)

where P is a m⇥ k recurrent matrix and sk
t�1 are the k top-most element of the stack at time t� 1.

In our experiments, we set k to 2. We call this model Stack RNN, and show it in Figure 1-a without
the recurrent matrix R for clarity.

Stack with a no-operation. Adding the NO-OP action allows the stack to keep the same value on
top by a minor change of the stack update rule. Eq. (4) is replaced by:

st[0] = at[PUSH]�(Dht) + at[POP]st�1[1] + at[NO-OP]st�1[0].

Extension to multiple stacks. Using a single stack has serious limitations, especially considering
that at each time step, only one action can be performed. We increase capacity of the model by
using multiple stacks in parallel. The stacks can interact through the hidden layer allowing them to
process more challenging patterns.

4

Expected advantage

The advantage of those methods comes from the fact that raw text is
largely sufficient (?) to train these models.

December 12, 2019 40 / 40

	Language modelling
	Generative neural parsing
	Variable beam search
	Unsupervised perspectives

