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Assessing the readability of words for L2 learners

I vocabulary is key to achieving successful reading
(Jeon & Yamashita, 2014)

I ensure the readability at the word level
1. identify/predict lexical difficulty in reading
2. select/enhance the reading material

I second language acquisition (SLA)
e.g., acquisitional complexity, ...

I computational linguistics (NLP)
e.g., formalize complexity, automatic simplification

I (intelligent) computer-assisted language learning (CALL)
e.g., effectiveness of educational technology
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Identifying lexical difficulty in reading: An example

Le village dans son puits de
rocher n’était pas encore noyé
sous la neige, bien qu’elle vînt
tout près de lui, arrêtée net par
les forêts de sapins qui
protégeaient ses environs. Ses
maisons basses ressemblaient,
de là-haut, à des pavés, dans
une prairie.

— The Inn by Guy de
Maupassant

Threshold methods
word length (e.g., > 3 syllables) (Gunning, 1952)

Lexicon methods
word frequency (e.g., basic vocabulary list)
(Gougenheim et al., 1964)

Empirical & statistical methods

I observe from learner data
I engineer features, machine learning
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Limitation #1: Contextualization

Lexicon methods

I same tally for word forms that are inherently polysemous (Tharp, 1939)

Empirical & statistical methods

I rankings, comparative judgments, ... on vocabulary lists
(Gooding et al., 2019; Lee & Yeung, 2018; Maddela & Xu, 2018)

Meaning-based approach

1. frequency of disambiguated word senses
2. measuring and predicting difficulty of reading words in context
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Limitation #2: Personalization

One-size-fits-all for optimal data collection

I splitting data among annotators (G. H. Paetzold & Specia, 2016)

I aggregated data from Amazon Mechanical Turk (Yimam et al., 2018)

I rules out variance and outliers (Dörnyei, 2009)

Personalized approach

1. learner-specific word-level readability measurements
2. link factors of lexical complexity to the learner
3. integrate learner characteristics in predictions
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Structure of the thesis

Part 1: Status quaestionis
1. Predicting lexical competence in L2 reading
2. Automated identification of difficult words

Part 2: Measuring lexical difficulty
1. A priori knowledge: CEFR-graded word frequencies
2. A posteriori knowledge: Noticing difficulty while reading

Part 3: Predicting lexical difficulty
1. A mixed-effects analysis of indices of lexical complexity
2. Contextualized and personalized deep learning
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Predicting lexical competence in L2 reading

Previous syntheses on vocabulary and L2 reading

L2 reading comprehension vocabulary is a strong correlate (r = .79)
I “a language problem rather than a reading problem”

(Jeon & Yamashita, 2014, p. 196)
I skills needed to achieve a reading ease on par with natives

(Melby-Lervag & Lervag, 2014)

incidental vocabulary acquisition unconscious learning of new words
while engaging in meaning-focused tasks (Krashen, 1989)

1. Superior to other modes of learning?
(Hulstijn, 2001; Raptis, 1997)

2. What factors contribute to vocabulary acquisition?
(Huckin & Coady, 1999)

3. How effectively can we (technologically) enhance the reading
input? (Abraham, 2008; Vahedi et al., 2016; Yun, 2011)
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Predicting lexical competence in L2 reading

Lexical competence as a criterion variable L2 reading

Previous literature reviews have looked at either:
I the effect of vocabulary on L2 reading comprehension
I the effect of reading on L2 vocabulary acquisition

Research aims and questions

Methodological synthesis of studies statistically examining lexical
competence as a criterion/dependent variable in L2 reading

1. What is the scope of publications and studies?
2. How has lexical competence been statistically modeled?

I What measurements have been used?
I What predictors have been tested?
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Predicting lexical competence in L2 reading

A systematic scoping review
Tack, François, Desmet, and Fairon (2020, in preparation)

Inclusion/exclusion criteria

Population learners of a foreign language
Concept I lexical competence triggered during reading

I silent reading of words in context
Method I empirical studies (with all reading conditions)

I dependent variable in statistical tests

1. searched in Web of Science, ProQuest, ACL Anthology
2. retrieved 2,209 records
3. selected 125 publications
4. analyzed 134 studies
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Predicting lexical competence in L2 reading

RQ1: Citation analyses of publications
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label propagation clusters
c01 complex word identification task,
complex words, difficult words,
orthographic word features, simple
words, word complexity, word
complexity identification
approaches, word difficulty, word
embedding features, word embeddings
c02 contextual l2 word learning,
difficult vocabulary words,
incidental word learning, jumbled
word reading, l2 words, target
words, vocabulary words, word
knowledge, word learning, word
meanings

I sparsely connected
bibliographic coupling
network

I two research clusters
1. applied linguistics

(SLA, CALL, c02 = 100)
2. computational linguistics

(NLP, c01 = 21)

I need to bridge the gap
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Predicting lexical competence in L2 reading

RQ1: Descriptive analyses of studies
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I convenience participant
samples
I English L2
I intermediate learners
I university students/staff

I small samples of vocabulary
I incidental vocabulary

acquisition
I unfamiliar (pilot/pretest)
I non-existent words
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Predicting lexical competence in L2 reading

RQ2: Measurements of lexical competence
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79% offline procedures
(i.e., before/after reading)

I decontextualized stimuli
I form/meaning

recognition/recall

21% online procedures
(i.e., while reading)

I contextualized stimuli
I selected form responses
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Predicting lexical competence in L2 reading

RQ2: Predictors of lexical competence
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I mainly studies on effect of
nature of the input
I vocabulary traits
I input enhancement

I fewer studies on predictors
related to
I learner
I method of collection/analysis
I interaction during task

I sparsity predictors and
measurements
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Predicting lexical competence in L2 reading

Key takeaways of the systematic review

RQ1: Scope of publications and studies

I fragmented between applied and computational linguistics
I small samples of vocabulary tested

RQ2: Lexical competence

I mainly assessed in a decontextualized manner
I few online procedures of meaning recall/recognition
I mainly input-related predictors
I not many predictors related to the learner
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Automatic identification of difficult words

First CWI Shared Task (G. Paetzold & Specia, 2016)

In 1832 his family emigrated

thence to Belleville, Ontario,

where he apprenticed with

the printer at the town

newspaper, The Belleville

Intelligencer.

System Type F1 G

SV000gg ensemble 0.25 0.77
PLUJAGH threshold 0.35 0.61
CoastalCPH neural 0.11 0.51

I data
I Simple English Wikipedia
I 9,200 sentences
I distributed among 400 non-natives
I judge comprehension difficulty

I systems
I ensemble learning on features of lexical

complexity
I neural networks did not perform well

(small training set)
I issues with data collection

(Zampieri et al., 2017)
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Automatic identification of difficult words

Second CWI Shared Task (Yimam et al., 2018)

TASK DESCRIPTION 

sites.google.com/view/cwisharedtask2018
➤ 4 tracks 

- 3 monolingual tracks: English - German - Spanish 

- 1 multilingual track: EN/DE/ES → French

➤ 2 classification tasks

Both China and the Philippines flexed their muscles on Wednesday

simple simple complex complex simple simple

0.0 0.0 0.4 0.25 0.0 0.0

- binary: complex if at least one subject (F1 macro) 

- probabilistic: ratio of complex annotations (MAE)
8

I data
I English, German, Spanish, French
I L1 & L2 speakers (Amazon Mechanical Turk)
I multi-word annotations
I binary and probabilistic classification

I systems
I ensemble learning with complexity features (EN)
I neural networks top-tier performance
I cross-lingual complexity assessment (EN/DE/ES > FR)
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Automatic identification of difficult words

Is it the identification of "complex" or "difficult" words?

Complex word identification

I evolution in automatic lexical simplification
I distinguish complex and simple words

1. based on edit histories Simple Wikipedia (Shardlow, 2013)
2. based on user annotations (G. Paetzold & Specia, 2016; Yimam et al., 2018)

In what follows, we will define:
complexity aspects of the target language (form, meaning, function)

(Kortmann & Szmrecsanyi, 2012)

difficulty for the learner
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Two kinds of measures

A priori knowledge: reading material in L2 textbooks and readers

I graded per CEFR (Council of Europe, 2001) level
I expert knowledge of readability for learners
I distributions of word occurrence across levels
I graded frequency lexicons

A posteriori knowledge: self-paced reading tasks

I online measurement of subjective judgment
I what triggers learners to notice (highlight) difficulty
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CEFR-graded word frequencies

A priori knowledge of lexical difficulty

A1 A2 B1 B2 C1 C2 OOV

CEFR-graded word frequencies

L2 
textbooks 
readers

out-of-
vocabulary 

words

CEFRLex project
I FLELex for French L2 (Francois et al., 2014)
I SVALex for Swedish L2 (François et al., 2016)
I ...
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CEFR-graded word frequencies

NT2Lex
Tack, François, Desmet, and Fairon (2018)

A lexicon with CEFR-graded frequencies for Dutch L2

I textbooks and readers, A1 to C1 levels, 461,088 tokens in total
I preprocessing

1. part-of-speech tagging (van den Bosch et al., 2007)
2. word-sense disambiguation on DutchSemCor
3. linkage to Open Dutch WordNet

(Postma et al., 2016)

Related to work on readability for Dutch L1
I text-to-pictograph translation, with word-sense disambiguation

(Sevens et al., 2016)

I automatic lexical simplification (Bulté et al., 2018)
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CEFR-graded word frequencies

NT2Lex, a graded lexicon linked to Open Dutch WordNet
The added value of word-sense disambiguation

w/o semantic disambiguation 15,227 entries
lemma part of speech sense gloss A1 A2 B1 B2 C1
omgangstaal n ? ‘vernacular’ 26
pakken v ? ‘grab, ...’ 708 685 398 19

w/ semantic disambiguation 17,743 entries
lemma part of speech sense gloss A1 A2 B1 B2 C1
omgangstaal n 1 ‘vernacular’ 26
pakken v 1 ‘grab’ 35 117 101 5
...

...
...

...
pakken v 10 ‘defeat’ 51 12
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CEFR-graded word frequencies

Relative depth in WordNet hypernymy tree

Index of semantic complexity

distinguish general (d = 0) from specific
(d = 1) words

pakken (verb)
d = .17 get into one’s hands, take physically
d = .83 put at a disadvantage; hinder, harm
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resource
NT2Lex w/ disambiguation
NT2Lex w/o disambiguation (average of all senses)

averaged vs. disambiguated (Kruskal-Wallis tests per level)
I overestimates complexity of basic words (HA1 = 7.27,p = .007)

I underestimates complexity of advanced words (HC1 = 6.91,p = .009)
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CEFR-graded word frequencies

Cognates in FLELex (w/ nl) and in NT2Lex (w/ fr)
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CEFR-graded word frequencies

Lexicon-based identification of difficult words

http://cental.uclouvain.be/nt2lex/

I enhanced lexicon-based method
I basic lists > graded lists
I frequency of word senses

Limitations

I one-size-fits-all approach
I no full coverage of WSD

(76% of adj., adv., nouns, verbs)
I no one-to-one correspondence

between resources
I further understanding needed in

editorial choices
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Noticing difficulty in self-paced reading

A posteriori knowledge of lexical difficulty

construct I difficulty to decode word form
I difficulty to comprehend word meaning

behaviors I eye gaze, movements, fixations
(Štajner et al., 2017)

I misreading in read-aloud data
(Gala et al., 2020)

I subjective judgment (notice difficulty)
I ...

tasks I silent, self-paced reading of words in context
I ...
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Noticing difficulty in self-paced reading

Empirical study on French L2 learners

Instructions to highlight words (≈meaning recognition)
1. I don’t remember having seen this word before.
2. I have seen this word before, but I don’t know what it means.
3. I can’t find a synonym/explanation for this word.
4. I can’t translate this word in my native language.
5. I need to use a dictionary to understand the word.

Trial 1

I 9 subjects (A2/B1, CH/ES/JA/NL)
I 51 texts (extensive reading)

Trial 2

I 47 subjects (A2/B1/B2/C1)
I 5 texts (different per level)
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Noticing difficulty in self-paced reading

Observing difficulty as a binomial distribution
y ∼ B(N,p)

Subjects

Dataset Lang. Pop. N p Mp (SD) minp maxp

CWI2016 (test) EN L2 88 221 0.047

CWI2018 (test)

EN L1 + L2 2095 0.383

EN L1 + L2 1287 0.424

EN L1 + L2 870 0.505

DE L1 + L2 959 0.392

ES L1 + L2 2233 0.406

FR L1 + L2 2251 0.292

Trial 1 FR L2 189 084 0.053 0.053 ± 0.036 0.014 0.119
Trial 2 FR L2 72 970 0.040 0.041 ± 0.032 0.010 0.151
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Generalized linear mixed-effects analysis

The need to take into account random effects

Level 2: Subject j

Level 1: Item i in text

Trial 1 Trial 2

null model β SE eβ 95% CI β SE eβ 95% CI

(Intercept) −3.07*** 0.17 0.05 [0.03, 0.07] −3.37 *** 0.20 0.03 [0.02, 0.05]

τ00 pro_level:sbj_id 0.45 0.34
τ00 pro_level 0.14
ICC 0.12 0.13

*** p < .001
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Generalized linear mixed-effects analysis

Model selection

ln

[
P(Yij = 1 | u0j)

P(Yij = 0 | u0j)

]
= β0j + β1jX1ij + ...+ βmjXmij

β0j = γ00 + γ01Z1j + ...+ γ0nZnj + u0j

βmj = γm0

variables X features of lexical complexity
Z features related to learner (proficiency level, L1, ...)

definition u0j random intercept (variability in extent of effect)
selection I standard scaling ∼ N(0, 1)

I remove multicollinearity with VIF (> 4)
I stepwise forward selection with AIC
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Generalized linear mixed-effects analysis

Features of lexical complexity

More than 200 predictors tested
Form I length of the word (in characters, letters, syllables, stem)

I character n-grams (sequence likelihood, entropy)
I OLD20 norm (average orthographic Levenshtein distance)

Meaning I FastText dimensions, vector similarity
I WordNet (hypernymy, hyponymy, synonymy, ...)

Use I word n-gram likelihood in FRCOW16
I morphosyntactic function (part of speech, category)
I syntactic dependency function (depth, head distance, ...)
I frequency in Manulex and FLELex

Other I Lexique3 norms
I order of occurrence, exposure, spacing in reading task
I readability thresholds (polysyllables, basic vocabulary)
I etymological information (borrowing, cognates, ...)
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Generalized linear mixed-effects analysis

lme4::glmer with random intercepts
Trial 1 Trial 2

full model β SE eβ 95% CI β SE eβ 95% CI

(Intercept) −4.62 *** 0.27 0.01 [0.01 , 0.02] −4.08*** 0.32 0.02 [0.01 , 0.03]
ngr.word.1.ngr.frcow16ax.surprisal 0.89*** 0.02 2.43 [2.36, 2.51 ] 1.18 *** 0.03 3.26 [3.07, 3.46]
rea.list.stopwords −1.48*** 0.06 0.23 [0.20, 0.26]
occ.expo.docu.l −3.74*** 0.20 0.02 [0.02, 0.04] −0.45*** 0.07 0.64 [0.56, 0.73 ]
res.FLELex-TT.A1_SFI −0.38*** 0.02 0.69 [0.66, 0.71 ] −0.77 *** 0.04 0.46 [0.42, 0.49]
msy.categ_v 0.35 *** 0.03 1.42 [ 1.34, 1.50]
msy.categ_a 0.18 *** 0.03 1.20 [ 1.12 , 1.28]
ety.borr −0.18 *** 0.01 0.83 [0.81 , 0.86] −0.23 *** 0.03 0.80 [0.75 , 0.85]
msy.categ_r −0.29 *** 0.07 0.75 [0.66, 0.85] −1.41 *** 0.16 0.24 [0.18 , 0.33 ]
msy.categ_e −3.17 *** 0.11 0.04 [0.03, 0.05]
msy.categ_g −1.57 *** 0.11 0.21 [0.17 , 0.26]
res.Manulex.G1_SFI 0.24*** 0.03 1.27 [ 1.19 , 1.35 ]

τ00 pro_level:sbj_id 0.61 0.51
τ00 pro_level 0.36
ICC 0.16 0.21

Marginal R2 0.84 0.51
Conditional R2 0.86 0.61
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Generalized linear mixed-effects analysis

Variance explained by 300-dimensional embeddings

Trial 1 Trial 2
R2 R2

ngr.word.1.ngr.frcow16ax.surprisal 0.87 0.90
rea.list.stopwords 0.95 T

occ.expo.docu.l 0.27 0.51
res.FLELex.TT.A1_SFI 0.72 0.70
msy.categ_v 0.92 T

msy.categ_a 0.75 T

ety.borr 0.44 0.48
msy.categ_r 0.84 T 0.94 T

msy.categ_e 0.97 T

msy.categ_g 0.98 T

res.Manulex.G1_SFI 0.71
T Tjur’s R2 on logistic regression with liblinear solver

I distributional representation
I learned hidden layers in neural

network
I FastText, includes subword information

(Bojanowski et al., 2017; Grave et al., 2018)

I most features are captured by these
dimensions

I except for
I incremental processing

(frequency of exposure)
I etymology (borrowing)
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Deep learning of lexical difficulty

Baseline Deep Neural Network

sigmoid

n o y é

6 10 28 15 0 0

MAX_LEN x 16

character
embedding

4 filters

conv 1D (relu)

(MAX_LEN/2) x 4

max pool 1D

4 filters

conv 1D (relu)

(MAX_LEN/4) x 4

max pool 1D

pre-trained
word embedding

FastText

noyé

31791

1 auxiliary training

sigmoid

LSTM LSTM

feedforward (relu)

dropout (0.3)

feedforward (relu)

dropout (0.3)

feedforward (relu)

noyé Previous work by De Hertog and Tack, 2018
I top-tier performance on EN & ES

at CWI2018 shared task
I limitations

x recent word embeddings
x contextualized (sequence) learning
x personalized model

Adapted, distilled implementation
I TensorFlow’s Keras API
I optimization on binary cross-entropy loss

I Adam algorithm
I balanced class weights
I early stopping on held-out data (10%)
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Deep learning of lexical difficulty

Two enhanced Deep Neural Networks

sigmoid

n o y é
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MAX_LEN x 16

character
embedding

4 filters

conv 1D (relu)

(MAX_LEN/2) x 4

max pool 1D

4 filters
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(MAX_LEN/4) x 4

max pool 1D

pre-trained
word embedding

FastText

noyé

31791

BiLSTM2 x 64 dim

DNN

Le village dans son puits de rocher n'était pas encore noyé sous la neige.

Le village dans son puits de rocher n'était pas encore noyé sous la neige.
1110

'The village in its rocky sha� was not yet drowned under the snow.'

0 0 0 0 0 0 0 0 0 00

auxiliary training

sigmoid

Contextualized DNN [DNN]

Bidirectional Long Short-Term Memory
I character embeddings, convolutions
I pre-trained FastText embeddings
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Deep learning of lexical difficulty

Two enhanced Deep Neural Networks
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Le village dans son puits de rocher n'était pas encore noyé sous la neige.

Le village dans son puits de rocher n'était pas encore noyé sous la neige.
1110

'The village in its rocky sha� was not yet drowned under the snow.'

0 0 0 0 0 0 0 0 0 00

auxiliary training

sigmoid

Contextualized DNN [DNN]

Bidirectional Long Short-Term Memory
I character embeddings, convolutions
I pre-trained FastText embeddings

(Bojanowski et al., 2017; Grave et al., 2018)

Personalized DNN [DNN+P]

+ subject encoding (ID)
+ proficiency level (CEFR)
+ native language (L1)
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Deep learning of lexical difficulty

Performance analysis
Current SOTA benchmark metrics are sensitive to uncertainty in true distributions

ysubject ∼ B(N,p)
I one-factor-at-a-time analysis on prior p

(constant N, constant model P[y = 1] = 1)
I insensitive to uncertainty

Phi / MCC correlation coefficient
I binarization
I robust on class imbalance

(Boughorbel et al., 2017)

Tjur’s D coefficient of discrimination
I differences in mean P̂(y = 1)
I between y = 1 and y = 0

020 2040 4060 6080 80

p
(% change from base)

0.00

0.05

0.10

0.15

sc
or

e

F1 macro
F1 weighted
G-score
Phi
Tjur's D

Figure: Performance after
percent changes from
pbase = 0.05
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Deep learning of lexical difficulty

Stratified 10-fold cross-validation

Table: Friedman repeated
measures (median)

Ablation φ D P̂1
a

models
DNN+P Full 0.38 0.67 0.85

– L1 0.37 0.65 0.81
– ID 0.35 0.67 0.86
– Level 0.35 0.63 0.83

DNN Full 0.33 0.67 0.85
– CharCNN 0.32 0.65 0.87
– FastText 0.19 0.45 0.88

baselines
DeHertog2018 0.41 0.58 0.65
CEFR 0.12 N/A N/A
Constant 0.00 0.00 1.00

a Average estimated probability of difficulty on y = 1

Contextualization
DNN outperforms DeHertog2018
z = 4.78, p < .001

Personalization
DNN+P outperforms DNN
z = 3.95, p < .001

Ablation worsens performance, esp.:
I word embeddings
I proficiency level
I subject ID

A. Tack (CENTAL ITEC FNRS) Predicting the difficulty of words for L2 readers 30/04/2020 47 / 71



Introduction

Systematic literature review
Predicting lexical competence in L2 reading
Automatic identification of difficult words

Measuring lexical difficulty
CEFR-graded word frequencies
Noticing difficulty in self-paced reading

Predicting lexical difficulty
Generalized linear mixed-effects analysis
Deep learning of lexical difficulty

Conclusion

References

Appendices



Introduction Systematic literature review Measuring lexical difficulty Predicting lexical difficulty Conclusion References Appendices

Key takeaways I

Focus #1: Contextualization

Literature few contextualized measurements
Measure graded lexicon with word-sense disambiguation

I better estimate of word frequency
I better estimate of semantic complexity

Prediction contextualized DNN (BiLSTM) achieves
I better overall certainty of difficulty
I better discriminative power

(D = .67)
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Key takeaways II

Focus #2: Personalization

Literature few subject- and task-related predictors
Measure how learners notice difficulty

I variability that was not previously accounted for
I larger samples of vocabulary tested

Prediction mixed models and deep learning
I substantial explanatory power with shallow features
I sensitivity of SOTA metrics to learner variability
I personalized DNN achieves better correlation

(rφ = .38)
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Future directions

Measuring lexical difficulty

1. enhance experimental design with task-related factors
2. contrast subjective noticing of difficulty with other online measures
3. authentic learning context (e.g., NedBox)

Predicting lexical difficulty

1. continue exploration of fine-tuning with CamemBERT
2. perceived effectiveness of predictions
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Random effects of unigram surprisal (Trials 1 vs. 2)
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lme4::glmer on FastText word embeddings

Trial 1 Trial 2

fasttext β SE eβ 95% CI β SE eβ 95% CI

(Intercept) −6.05 ∗∗∗ 0.25 0.00 [ 0.00, 0.00] −5.18 ∗∗∗ 0.27 0.01 [ 0.00, 0.01 ]
emb.dim.cc.84 2.87 ∗∗∗ 0.07 17.67 [ 15.48, 20.15 ] 1.23 ∗∗∗ 0.07 3.43 [ 2.99, 3.94]
emb.dim.cc.100 −1.90 ∗∗∗ 0.06 0.15 [ 0.13 , 0.17 ] −1.58 ∗∗∗ 0.08 0.21 [ 0.17 , 0.24]
emb.dim.cc.16 0.64 ∗∗∗ 0.02 1.91 [ 1.84, 1.97] 0.81 ∗∗∗ 0.03 2.24 [ 2.12 , 2.37 ]
emb.dim.cc.154 0.85 ∗∗∗ 0.04 2.33 [ 2.14 , 2.53 ]

τ00 pro_level:sbj_id 0.52 0.40
τ00 pro_level 0.24
ICC 0.14 0.16

Marginal R2 0.84 0.69
Conditional R2 0.86 0.74

∗∗∗ p < .001
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Sensitivity analysis on 10-fold cross-validation test sets
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Performance on CWI benchmarks

Table: Performance on the first CWI shared task (G. Paetzold & Specia, 2016)

System Type Accuracy Precision Recall F1 G-score φ D

DNN neural 0.85 0.17 0.58 0.26 0.69 0.25 0.33

SV000gg ensemble 0.78 0.15 0.77 0.25 0.77 — —
CoastalCPH neural 0.69 0.06 0.40 0.11 0.51 — —
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