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Assessing the readability of words for L2 learners

vocabulary is key to achieving successful reading
,4 / (Jeon & Yamashita, 2014)

ensure the readability at the word level
select/enhance the reading material

second language acquisition (SLA)
e.g., acquisitional complexity, ...

computational linguistics (NLP)

e.g., formalize complexity, automatic simplification
(intelligent) computer-assisted language learning (CALL)
e.g., effectiveness of educational technology
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Identifying lexical difficulty in reading: An example

Le dans son de
n'était pas encore
sous la neige, bien qu’elle

tout pres de lui, net par
les foréts de sapins qui

ses . Ses
maisons basses ,

de la-haut, a des pavés, dans
une prairie.

— The Inn by Guy de
Maupassant

word length (e.g., > 3 syllables) (Gunning, 1952)

word frequency (e.g., basic vocabulary list)
(Gougenheim et al., 1964)

observe from learner data
engineer features, machine learning
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Limitation #1: Contextualization

same tally for word forms that are inherently polysemous (Tharp, 1939)

rankings, comparative judgments, ... on vocabulary lists
(Gooding et al.,, 2019; Lee & Yeung, 2018; Maddela & Xu, 2018)

Meaning-based approach

1. frequency of disambiguated word senses
2. measuring and predicting difficulty of reading words in context
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Limitation #2: Personalization

splitting data among annotators (G. H. Paetzold & Specia, 2016)
aggregated data from Amazon Mechanical Turk (Yimam et al, 2018)
rules out variance and outliers (Dsrnyei, 2009)

Personalized approach

1. learner-specific word-level readability measurements
2. link factors of lexical complexity to the learner
3. integrate learner characteristics in predictions
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Structure of the thesis

Part 1: Status quaestionis
Predicting lexical competence in L2 reading
Automated identification of difficult words

Part 2: Measuring lexical difficulty
A priori knowledge: CEFR-graded word frequencies
A posteriori knowledge: Noticing difficulty while reading

Part 3: Predicting lexical difficulty
A mixed-effects analysis of indices of lexical complexity
Contextualized and personalized deep learning
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Previous syntheses on vocabulary and L2 reading

vocabulary is a strong correlate (r = .79)
“a language problem rather than a reading problem”
(Jeon & Yamashita, 2014, p. 196)
skills needed to achieve a reading ease on par with natives
(Melby-Lervag & Lervag, 2014)
unconscious learning of new words

while engaging in meaning-focused tasks (Krashen, 1989)
Superior to other modes of learning?
(Hulstijn, 2001; Raptis, 1997)
What factors contribute to vocabulary acquisition?
(Huckin & Coady, 1999)
How effectively can we (technologically) enhance the reading
iNpuUt? (Abraham, 2008; Vahedi et al., 2016; Yun, 20T1)
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Lexical competence as a criterion variable L2 reading

Previous literature reviews have looked at either:
the effect of vocabulary on L2 reading comprehension
the effect of reading on L2 vocabulary acquisition

Methodological synthesis of studies statistically examining lexical
competence as a criterion/dependent variable in L2 reading
What is the scope of publications and studies?
How has lexical competence been statistically modeled?

What measurements have been used?
What predictors have been tested?
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A systematic scoping review

Tack, Francois, Desmet, and Fairon (2020, in preparation)

Inclusion/exclusion criteria

Population learners of a foreign language
Concept P lexical competence triggered during reading
> silent reading of words in context

Method » empirical studies (with all reading conditions)
» dependent variable in statistical tests

searched in Web of Science, ProQuest, ACL Anthology
retrieved 2,209 records

selected

analyzed
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RQ1: Citation analyses of publications

publication year
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label propagation clusters
co1 complex word identification task,
complex words, difficult words,
orthographic word features, simple
O words, word complexity, word
complexity identification
approaches, word difficulty, word

g features, word

co2 contextual 12 word learning,

difficult vocabulary words,

incidental word learning, jumbled
@ word reading, 12 words, target

words, vocabulary words, word

knowledge, word learning, word

meanings

19

sparsely connected
bibliographic coupling
network

two research clusters
applied linguistics
(SLA, CALL, coz = 100)
computational linguistics
(N LP, col = 21)

need to bridge the gap
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Systematic literature review
000008000

Predicting lexical competence in L2 reading

RQ1I: Descriptive analyses of studies

> convenience participant
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g¢ £% ¢ acquisition
f g ¢ » unfamiliar (pilot/pretest)
g » non-existent words
8

selection criterion

Predicting the difficulty of words for L2 readers
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RQ2: Measurements of lexical competence

free -

isolated -

meaning -

L1 -

passive -

constructed -

meaning -
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- cued

- contextualized

- form

-L2

- active

- selected

- form

3

offline procedures
(i.e., before/after reading)

decontextualized stimuli

form/meaning
recognition/recall

online procedures
(i.e., while reading)

contextualized stimuli
selected form responses
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RQ2: Predictors of lexical competence

contnt Jgenre— mainly studies on effect of
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Key takeaways of the systematic review

fragmented between applied and computational linguistics
small samples of vocabulary tested

mainly assessed in a manner

few online procedures of recall/recognition
mainly input-related predictors

not many predictors related to the
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First CWI Shared Task (c. paetzold & specia, 2016)

In 1832 his family emigrated
thence to Belleville, Ontario,
where he apprenticed with
the printer at the town
newspaper, The Belleville

Intelligencer.

System Type Fy G

SV000gg ensemble 0.25 0.77
PLUJAGH threshold 0.35 0.61
CoastalCPH neural om 0.51

data
Simple English Wikipedia
9,200 sentences
distributed among 400 non-natives
judge comprehension difficulty

systems

ensemble learning on features of lexical
complexity

neural networks did not perform well
(small training set)

issues with data collection

(Zampieri et al., 2017)
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Second CWI Shared Task (vimam et al, 2018)

Both  China and the Philippines flexed their muscles on Wednesday
simple simple complex complex simple simple
0.0 0.0 0.4 0.25 0.0 0.0
data

English, German, Spanish, French

L1 & L2 speakers (Amazon Mechanical Turk)
multi-word annotations

binary and probabilistic classification

systems
ensemble learning with complexity features (EN)
neural networks top-tier performance
cross-lingual complexity assessment (EN/DE/ES > FR)
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Is it the identification of "complex" or "difficult" words?

evolution in automatic lexical simplification
distinguish complex and simple words

based on edit histories Simple Wikipedia (Shardlow, 2013)
based on user annotations (G. Paetzold & Specia, 2016; Yimam et al., 2018)

In what follows, we will define:
aspects of the target language (form, meaning, function)

(Kortmann & Szmrecsanyi, 2012)

for the learner

30/04/2020
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Two kinds of measures

graded per CEFR (Council of Europe, 2001) level
expert knowledge of readability for learners
distributions of word occurrence across levels

A posteriori knowledge: self-paced reading tasks

> online measurement of subjective judgment
> what triggers learners to notice (highlight) difficulty

30/04/2020
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A priori knowledge of lexical difficulty

L2

readers

out-of-
vocabulary
words

CEFR-graded word frequencies

CEFRLex project
FLELex for French L2 (Francois et al., 2014)
SVALex for Swedish L2 (Francois et al., 2016)
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NT2Lex

Tack, Francois, Desmet, and Fairon (2018)

textbooks and readers, Al to C1 levels, 461,088 tokens in total
preprocessing

part-of-speech tagging (van den Bosch et al,, 2007)
word-sense disambiguation on DutchSemCor
linkage to Open Dutch WordNet

(Postma et al., 2016)

Related to work on readability for Dutch L1
text-to-pictograph translation, with word-sense disambiguation
(Sevens et al., 2016)
automatic lexical simplification (Bulté et al, 2018)
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NT2LeXx, a graded lexicon linked to Open Dutch WordNet

The added value of word-sense disambiguation

lemma part of speech sense gloss Al A2 Bl B2 (o4
omgangstaal n ? ‘vernacular’ 26
pakken v ? ‘grab, ... 708 685 398 19
lemma part of speech sense gloss Al A2 Bl B2 C1
omgangstaal n 1 ‘vernacular’ 26
pakken Y 1 ‘grab’ 35 17 101 5
pakken v 10 ‘defeat’ 51 12

30/04/2020
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Measuring lexical difficulty
0000800

CEFR-graded word frequencies

Relative depth in WordNet hypernymy tree

Index of semantic complexity ) e
distinguish general (d = 0) from specific
(d =1) words

relative depth in hypernymy t

pakken (verb)

d = 17 getinto one's hands, take physically : P
d = .83 put at a disadvantage; hinder, harm : o

B2 c1

a1l B1
first level of occurrence

averaged vs. disambiguated (Kruskal-Wallis tests per level)
> overestimates complexity of basic words (Hx = 7.27,p = .007)
» underestimates complexity of advanced words (He, = 6.91,p = .009)

Predicting the difficulty of words for L2 readers 30/04/2020 28/7



CEFR-graded word frequencies

Cognates in FLELex (w/ nl) and in

count

200 -

175 -

150 -

125 -

100 -

resource = FLELex

l [ Emm translation
Al A2

IeveI

Measuring lexical difficulty
0000000

Bl
level

Predicting the difficulty of words for L2 readers

resource = NT2Lex

B2

C1

NT2Lex (w/ fr)

type
B etymology

Cc2
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Lexicon-based identification of difficult words

enhanced lexicon-based method

http://cental.uclouvain.be/nt2lex/ basic lists > graded lists
frequency of word senses

is een industrie- en distributiecentrum B heeft
South Louisiana ’ en is bekend door haar rijk
en keuken A2 de Mississip,
van  Mexico geschiedenis - . New Orle
N(soort,ev,basis, zijd, stan) o 3
B @ e o Yoo one-size-fits-all approach
van  New Orl ] , heeft
100
stad zelf ( 5 I .240.977 inwol no fu” Cove rage Of WSD
o de  bebo I R (76% of adj., adv., nouns, verbs)
M A2 Bl B2 C\ C2votal .
s vooral  in ad . Sommis
N e oo e () e e onathane no one-to-one correspondence
van de stad New Orleans , zoals Irish Bayou . between resources
d . vanaf  dat  moment  gingen de stad en de

further understanding needed in
editorial choices
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Measuring lexical difficulty
0000

Noticing difficulty in self-paced reading

A posteriori knowledge of lexical difficulty

construct »

behaviors »

v

tasks

vvyyvyy

difficulty to decode word form
difficulty to comprehend word meaning

eye gaze, movements, fixations

(Stajner et al.,, 2017)

misreading in read-aloud data

(Gala et al., 2020)

subjective judgment (notice difficulty)

silent, self-paced reading of words in context

Predicting the difficulty of words for L2 readers 30/04/2020
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Empirical study on French L2 learners

Instructions to highlight words (~ meaning recognition)
| don't remmember having seen this word before.
| have seen this word before, but | don't know what it means.
| can’t find a synonym/explanation for this word.
| can’t translate this word in my native language.
| need to use a dictionary to understand the word.

9 subjects (A2/B1, CH/ES/JA/NL) 47 subjects (A2/B1/B2/C1)
51 texts (extensive reading) 5 texts (different per level)
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Observing difficulty as a binomial distribution

y ~B(N,p)
Subjects
Dataset Lang. Pop. N p M, (SD) minp maXxp
CWI2016 (test) EN L2 88221 0.047
EN L1+L2 2095 0.383
EN L1+L2 1287 0.424
CWI2018 (test) EN L1+ 12 870 0.505
DE L1+L2 959 0.392
ES L1+L2 2233  0.406
FR L1+L2 2251  0.292
Trial 1 FR L2 189084 0.053 0.053+0.036 0.014 0.9

Trial 2 FR L2 72970 0.040 0.041 £0.032 0.010 O0.151
______ cl 30/04/2020 34/7
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Predicting lexical difficulty

Generalized linear mixed-effects analysis

The need to take into account random effects

Level 2: Subject j

- - — - == Level 1: ltem jin text
Trial 1 Trial 2

NULL MODEL B SE ef 95% ClI B SE ef 95% ClI

(Intercept) -3.07" 017 0.05 [0.03,0.07] —3.377" 0.20 0.03 [0.02, 0.05]

T0O0 pro_level:sbj_id 0.45 0.34

T0O0 pro_level 0.14

ICC 0.12 0.13
"p < .00

Predicting the difficulty of words for L2 readers 30/04/2020
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Model selection

= Boj + BiXajj + - + BmjXmij

Boj = 700 + Y0143 + .- + YonZnj + Ugj
ij = TYmO

features of lexical complexity

features related to learner (proficiency level, L1, ...)
random intercept (variability in extent of effect)
standard scaling ~ N(O, 1)

remove multicollinearity with VIF (> 4)

stepwise forward selection with AIC
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Features of lexical complexity

More than 200 predictors tested

length of the word (in characters, letters, syllables, stem)
character n-grams (sequence likelihood, entropy)
OLD20 norm (average orthographic Levenshtein distance)

FastText dimensions, vector similarity
WordNet (hypernymy, hyponymy, synonymy, ...)

word n-gram likelihood in FRCOW16

morphosyntactic function (part of speech, category)
syntactic dependency function (depth, head distance, ...)
frequency in Manulex and FLELex

Lexique3 norms
order of occurrence, exposure, spacing in reading task
readability thresholds (polysyllables, basic vocabulary)

etymological information (borrowing, cognates, ...)
30/04/2020 39/7



lme4: :glmer with random intercepts

Trial 1 Trial 2
FULL MODEL B SE ef 95% Cl B SE ef 95% Cl
(Intercept) —4.62"™ 027 0.01 [0.01, 0.02] -4.08" 0.32 0.02 [0.01, 0.03]
ngrword.l.ngr.frcowleax.surprisal 0.89"" 0.02 243 [2.36, 2.51] 108" 0.03 326  [3.07, 3.46]
rea.list.stopwords —1.48"™ 0.06 0.23 [0.20, 0.26]
occ.expo.docul —3.74™ 020 0.02 [0.02, 0.04 —0.45"" 0.07 0.64 [0.56, 0.73]
res.FLELex-TT.AL_SFI —0.38"™ 0.02 069 [0.66, 0.71] —0.77"" 0.04 0.46 [0.42, 0.49]
msy.categ_v 0.35™" 0.03  1.42 [1.34, 1.50]
msy.categ_a 018" 0.03 120 [1.12, 1.28]
ety.borr —018™ o0.01 0.83 [0.81, 0.86] -0.23"" 0.03 0.80 [0.75, 0.85]
msy.categ_r —0.29™ 0.07 075 [0.66, 0.85] —1.41"7" 0.6  0.24 [0.18, 0.33]
msy.categ_e —337™ om 0.04  [0.03, 0.05]
msy.categ_g -1.57"" o 0.21 [0.17, 0.26]
res.Manulex.G1_SFI 0.24™ 0.03 127 [1.19, 1.35]
TOO0 pro_level:sbj_id 0.61 0.51
T0O0 pro_level 0.36
IcC 0.16 0.21
Marginal R? 0.84 0.51
Conditional R? 0.86 0.61

o
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Variance explained by 300-dimensional embeddings

Trial1 Trial 2
RZ RZ

ngrword.l.ngr.frcowl6ax.surprisal 0.87 0.90
rea.list.stopwords 0.95T
occ.expo.docu.l 0.27 0.51
res.FLELex.TT.AI_SFI 0.72 0.70
msy.categ_v 0927
msy.categ_a 0.75 T
ety.borr 0.44 0.48
msy.categ_r 0.847 0.94 7
msy.categ_e 0.977
msy.categ_g 0987
res.Manulex.G1_SFI 0.71

TTjur's R%on logistic regression with liblinear solver

distributional representation

learned hidden layers in neural
network

FastText, includes subword information
(Bojanowski et al., 2017; Grave et al.,, 2018)

most features are captured by these
dimensions

except for

incremental processing
(frequency of exposure)
etymology (borrowing)
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Baseline Deep Neural Network

L ) Previous work by De Hertog and Tack, 2018

R § top-tier performance on EN & ES
E - m!m 1 at%WIZ(F;]S shared task
-— ropou 03 ) limitations
g , ":':’:::” 3 recent word embeddings
T A
(G— )

contextualized (sequence) learning
M )— 1 m personalized model

feedforward (relu)

(MAX_LEN/4) x 4

max pool 1D

4 filters

conv 1D (relu)

(MAX_LEN/2) x 4

max pool 1D

4 filters

MAX_LEN x 16

Adapted, distilled implementation

TensorFlow's Keras API

optimization on binary cross-entropy loss
Adam algorithm

S balanced class weights
iy early stopping on held-out data (10%)
e 30/04/2020



Predicting lexical difficulty
000000

Deep learning of lexical difficulty

Two enhanced Deep Neural Networks

SR R Ej{ TEE Contextualized DNN [DNN]

] Bidirectional Long Short-Term Memory
DY = > character embeddings, convolutions

(MAX_LEN/4) x 4

max pool 1D

4 filters

(MAX_LEN/2) x 4

max pool 1D

4 filters

MAX_LEN X 16

pre-trained
character
{ embedding J [Wordembeddlng

> pre-trained FastText embeddings

FastText
OEZE00
L= 14]

L )

-
Le village dans son puits de rocher n'était pas encore noyé sous la neige.

“The village in its rocky shaft was not yet drowned under the snow

Predicting the difficulty of words for L2 readers 30/04/2020 447N



Two enhanced Deep Neural Networks

Le village dans son puits de rocher n‘était pas encore noyé sous la neige.

U ENNECE DU REEE

[ )

2 x 64 dinm BILSTM >
(MAX_LEN/4) x 4
—
max pool 1D - °
4 filters al | 28
conv 1D (relu) Es| | & g
(MAX_LEN/2) x 4 CH -
e
max pool 1D (=
4 filters L4l 8
B1 S
conv 1D (relu) | 83
|A2 =2
MAX_LEN x 16 = g 4
Al a
eeE
character = —
{ Sy ] {word embedding } [o] 211
o|| &5
AR
[erofeefoe o] o] 3g ||
[lelr]e] ST

L

b

N
Le village dans son puits de rocher n'était pas encore noyé sous la neige.

“The village in its rocky shaft was not yet drowned under the snow

Bidirectional Long Short-Term Memory
character embeddings, convolutions

pre-trained FastText embeddings
(Bojanowski et al., 2017; Grave et al., 2018)

Personalized DNN [DNN+P]

+ subject encoding (ID)
+ proficiency level (CEFR)
+ native language (L1)
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Performance analysis

Current SOTA benchmark metrics are sensitive to uncertainty in true distributions

Ysubject ™~ B(N,p)
one-factor-at-a-time analysis on prior p
(constant N, constant model Py =1] =1)

insensitive to uncertainty

correlation coefficient
binarization
robust on class imbalance
(Boughorbel et al., 2017)

coefficient of discrimination
differences in mean P(y =1)
betweeny =Tandy =0

0.15 - -
..b.
,'.“
o 0.10 - w
8 - v oy
(2] .' Y
0.05 =+ vy
L 4
-v.- < v
- PO )
0.00 - AN YEY TIT. YLk MM
1 1 1 1 1 1 1 1 1
: Elma_cro SEPPOPOES S
- 1 weighted
@ G-score P
- Phi (% change from base)

Tjur's D

Performance after

percent changes from

Poase = 0.05
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Stratified 10-fold cross-validation

Friedman repeated
measures (median) DNN outperforms DeHertog2018

z=4.78, p < .001

Ablation b D P2
MODELS . .
Personalization
DNN+P outperforms DNN
z=3.95, p < .00l
Ablation worsens performance, esp.:
BASELINES X
CEFR 012 N/A N/A Word embeddlngs
Constant 0.00 0.00 1.00

proficiency level

@ Average estimated probability of difficulty ony =1

subject ID
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Key takeaways |

few contextualized measurements
graded lexicon with word-sense disambiguation
better estimate of word frequency
better estimate of semantic complexity
contextualized DNN (BiLSTM) achieves

better overall certainty of difficulty
better discriminative power
(D = .67)

30/04/2020
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Key takeaways Il

few subject- and task-related predictors

how learners notice difficulty
variability that was not previously accounted for
larger samples of vocabulary tested

mixed models and deep learning

substantial explanatory power with shallow features
sensitivity of SOTA metrics to learner variability
personalized DNN achieves better correlation

(I’¢ = 38)

30/04/2020
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Future directions

enhance experimental design with task-related factors
contrast subjective noticing of difficulty with other online measures
authentic learning context (e.g., NedBox)

continue exploration of fine-tuning with CamemBERT
perceived effectiveness of predictions
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Thank you!
Any questions?
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Random effects of unigram surprisal (Trials 1 vs. 2)
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lme4: :glmer on FastText word embeddings

Trial 1 Trial 2

FASTTEXT B SE ef 95% Cl B SE ef 95% ClI
(Intercept) —6.05 ***  0.25 0.00 [ 0.00, 0.00] —5.18 *** 027 0.01 [ 0.00, 0.01]
emb.dim.cc.84 2.87 *** 0,07 17.67 [15.48 20.15] 1.23 ***  0.07 3.43 [ 2,99, 3.94]
emb.dim.cc100 —1.90 ***  0.06 035 [0J3, 017] —1.58 ***  0.08 0.21 [ 017, 0.24]
emb.dim.ccl6 0.64 ***  0.02 1.91 [ 1.84, 1.97] 0.81 ***  0.03 2.24 [ 272, 2.37]
emb.dim.cc154 0.85 ***  0.04 2.33 [ 204, 2.53]
T00 pro_level:sbj_id 0.52 0.40

T0O0 pro_level 0.24

IcC 0.14 0.16

Marginal R? 0.84 0.69

Conditional R? 0.86 0.74

*p < .001
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Sensitivity analysis on 10-fold cross-validation test sets
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Performance on CWI benchmarks

Performance on the first CWI shared task (G. Paetzold & Specia, 2016)

System Type Accuracy Precision Recall F G-score 5 D
DNN neural 0.85 017 0.58 0.26 0.69 0.25 0.33
SV000gg ensemble 0.78 0.15 0.77 0.25 0.77 — —
CoastalCPH neural 0.69 0.06 0.40 omn 0.51 - —
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