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2) Extract the information

⚫ What method to use?
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in the articles
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- PDF conversion

- Fitz/PyMuPDF

- Headers identification

- Use of font sizes

- Information extraction

- Unitex

Information extraction - monographs
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Named Entity Recognition

Find type of entities in a document

- Dataset:

- 3 annotators, ~100 articles, ~11000 sentences
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Generative AI

- Ability to understand user prompt

- Ability to generate text in response

How exactly LLM generates text?, Ivan Reznikov, LinkedIn article, 

https://www.linkedin.com/pulse/how-exactly-llm-generates-text-ivan-reznikov



Generative AI
- Hallucinations?

- Different information depending on location?

- Structure?

- Computational cost?

Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for 

Medicine, Lee et al., 2023
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Text summarization → Summarize text by keeping 

important information

Generative Model

"A patient had phenytoin 

intoxication after 

administration of fluvoxamine, 

a selective serotonin reuptake 

inhibitor.”

{'DRUGS':     'phenytoin',

'fluvoxamine'}
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Generative AI – Few-shots prompting

Generative Model

Example:

USER: “The patient was taking paracetamol”

ASSISTANT: “{‘DRUGS’}: ‘Paracetamol’”

USER: “A woman suffer hepatotoxicity after 

consuming large amounts of ibuprofen”

ASSISTANT: “{‘DRUGS’: ‘Ibuprofen’}”
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a selective serotonin reuptake 

inhibitor.”
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Some results

Phi3-mini: 3.8B parameters model VS human VS NER

Single sentence entity extraction

Generative models

Human

NER



Conclusion

- The field of NLP is growing extremely rapidly

➔ Need to keep informed

- New technologies doesn’t necessarily replace existing ones

- Don’t forget to put things straight right from the start
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